Г. М. Трунов

КОРРЕКЦИЯ МАТЕМАТИЧЕСКОЙ ФОРМЫ ЗАПИСИ УРАВНЕНИЙ ЭЛЕКТРОМАГНЕТИЗМА И СОЗДАНИЕ НА ИХ ОСНОВЕ НОВОЙ СИСТЕМЫ ЭЛЕКТРОМАГНИТНЫХ ЕДИНИЦ

Предлагается осуществить коррекцию математической формы записи уравнений электродинамики и на их основе создать новую четырехразмерную теоретическую систему электромагнитных единиц (сокращенно: СТ), которую рекомендуется использовать при изложении курса физики "Электромагнетизм". Уравнения электромагнетизма, записанные в предлагаемой системе, не содержат размерных постоянных ε_0 и μ_0 : вместо них используются коэффициент $k_0=9\cdot 10^9\,H\cdot M^2/K\pi^2$ и фундаментальная константа $c=3\cdot 10^8\,\text{м/c}-$ скорость света в вакууме.

Законы физики не зависят от систем единиц, поэтому должен соблюдаться принцип инвариантности математической формы записи законов и основных определений физики в различных системах единиц. Этот принцип выполняется во всех разделах физики, кроме электромагнетизма.

Часть уравнений электромагнетизма, записанных в системе СГС, содержат фундаментальную константу c — скорость света в вакууме, а в определяющих уравнениях (закон Кулона, закон Ампера для параллельных токов, закон Био—Савара—Лапласа) отсутствуют размерные коэффициенты ε_0 и μ_0 и множитель $1/(4\pi)$.

В определяющих уравнениях, записанных в СИ, этот множитель появился в результате "рационализации" формы записи уравнений электромагнетизма, предложенной в 1892 г. английским физиком О. Хевисайдом с целью исключения множителя 4π из расчетных формул, широко используемых в электротехнике и из уравнений Максвелла. Необходимо особо отметить, что размерные коэффициенты ε_0 и μ_0 не имеют никакого физического смысла и лишь их комбинация $1/\sqrt{\varepsilon_0\mu_0}=c$ представляет собой скорость света в вакууме.

В табл. 1 представлены некоторые уравнения электромагнетизма, имеющие различный вид в СИ и системе СГС.

В соответствии с ГОСТ 8.417–81.ГСИ. "Единицы физических величин" [1] в учебном процессе во всех учебных заведениях рекомендована к обязательному использованию Международная система единиц (СИ). Тем не менее, во многих учебниках физики при изложении учения об электричестве параллельно приводятся формулы, записанные в системе СГС [2, 3]. А в последние годы появилась тенденция

Таблица 1 Уравнения электромагнетизма, записанные в системе СГС и СИ

-		-	
	СИ	СГС	
Закон Кулона	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{\varepsilon r^2}$	$F = \frac{Q_1 Q_2}{\varepsilon r^2}$	
Закон Ампера для параллельных токов	$\frac{F}{l} = \frac{\mu_0}{4\pi} \frac{2\mu I_1 I_2}{r}$	$\frac{F}{l} = \frac{2\mu I_1 I_2}{c^2 r}$	
Закон Био-Савара- Лапласа	$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \left[d\mathbf{l} \times \mathbf{r} \right]}{r^3}$	$d\mathbf{B} = \frac{I\left[d\mathbf{l} \times \mathbf{r}\right]}{cr^3}$	
Электрическое сме- щение D	$egin{aligned} \mathbf{D} &= arepsilon_0 \mathbf{E} + \mathbf{P}; \ \mathbf{D} &= arepsilon_0 arepsilon \mathbf{E} \end{aligned}$	$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P};$ $\mathbf{D} = \varepsilon \mathbf{E}$	
Напряженность магнитного поля H	$\mathbf{H} = rac{\mathbf{B}}{\mu_0} - \mathbf{M}; \mathbf{H} = rac{\mathbf{B}}{\mu_0 \mu}$	$\mathbf{H} = \mathbf{B} - 4\pi \mathbf{M}; \mathbf{H} = \frac{\mathbf{B}}{\mu}$	
Магнитный момент \mathbf{p}_m	$\mathbf{p}_m = IS\mathbf{n}$	$\mathbf{p}_m = \frac{1}{c} I S \mathbf{n}$	
Магнитодвижущая сила F_m	$F_m = \oint H \cdot dl = \sum_{i=1}^N I_i$	$F_m = \oint H \cdot dl = \frac{4\pi k_0}{c} \sum_{i=1}^{N} I_i$	
Магнитное сопротивление участка цепи R_m	$R_m = \frac{U_m}{\Phi} = \frac{I}{\mu_0 \mu S}$	$R_m = \frac{U_m}{\Phi} = \frac{I}{\mu S}$	
Теорема Гаусса	$ ext{div} \mathbf{D} = ho$	$\mathrm{div}\mathbf{D}=4\pi ho$	

[4, 5] при изложении курса "Электромагнетизм" использовать только систему СГС, хотя эта система единиц даже не значится в числе допускаемых к применению в учебном процессе. Можно также констатировать, что в учебниках физики прошлого времени наиболее авторитетных авторов (Л.Д. Ландау, И.Е. Тамм, Д.В. Сивухин) [6–8] и в фундаментальном Берклеевском курсе физики использовалась система СГС, а не система МКСА.

Это связано с тем, электромагнитные единицы СИ полностью перешли из системы единиц МКСА, которая была основана уравнениях электромагнетизма, соответствующих научным воззрениям на электромагнитное поле середины XIX века, согласно которым ваку-

ум ("светоносный эфир" по терминологии того времени) по своим свойствам принципиально не отличается от обычных сред и, следовательно, должен обладать диэлектрической ε_0 и магнитной μ_0 проницаемостями вакуума. Для описания электромагнитного поля в веществе, кроме силовых характеристик — напряженности электрического поля **E** и магнитной индукции **B** используют вспомогательные величины — электрическое смещение **D** и напряженность магнитного поля **H**. В СИ эти величины связаны между собой, соответственно, уравнениями $\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E}$ и $\mathbf{H} = \mathbf{B}/(\mu_0 \mu)$. В вакууме электромагнитное поле также должно характеризоваться четырьмя величинами **E**, \mathbf{D} ($\mathbf{D} = \varepsilon_0 \mathbf{E}$), **B** и \mathbf{H} ($\mathbf{H} = \mathbf{B}/\mu_0$). Следовательно, в СИ величины \mathbf{D} и \mathbf{E} , \mathbf{H} и \mathbf{B} имеют, соответственно, разные формулы размерности: $\dim \mathbf{D} \neq \dim \mathbf{E}$ и $\dim \mathbf{H} \neq \dim \mathbf{B}$.

Согласно современным научным представлениям 1) деление единого электромагнитного поля на электрическое и магнитное поле относительно, т.е. зависит от выбранной системы отчета, и поэтому силовые характеристики электромагнитного поля (напряженность электрического поля E и магнитная индукция B) должны быть однородными величинами и иметь одинаковую размерность: $\dim E = \dim B$; 2) для описания электромагнитных явлений в среде используют четыре величины: для электрического поля — E и D, для магнитного поля — E и E0 и E1 и E3 и E4 и E6 и E7 для описания электрического и магнитного поля: E8 и E9 для описания электрического и магнитного полей в вакууме достаточно двух векторов E9 и E9 для как для вакуума должны выполняться равенства E9 и E

Некоторые уравнения электромагнетизма, записанные в СИ, не соответствуют этим условиям, и поэтому преподавание курса физики с использованием электромагнитных единиц СИ дает "повод для введения неправильных представлений о сущности электрических и магнитных полей [8]".

В системе СГС однородные величины E и B имеют одинаковую формулу размерности, в вакууме выполняются равенства D = E и H = B, а уравнения электромагнетизма "отличаются той неповторимой простотой и стройностью, за которые не жаль заплатить переводом электромагнитных единиц из СГС в СИ и обратно [9]".

Но возврат к системе СГС, на наш взгляд, является регрессивным шагом, так как электромагнитные единицы этой системы обладают многими принципиальными недостатками, которые создают у студентов "неправильные представления о величинах, определяющих магнитное состояние тел [10]". Перечислим эти недостатки: 1) большинство единиц имеет дробные показатели размерности (по выражению

- А. Зоммерфельда "противоестественные" размерности); 2) некоторые электромагнитные величины имеют размерности механических величин, например, индуктивность и емкость имеют размерность длины; 3) многие электромагнитные единицы СГС не имеют собственных названий; 4) единицы магнитной индукции В и напряженности магнитного поля Н имеют разные названия (соответственно, "гаусс" и "эрстед"), хотя для вакуума эти величины, как было сказано выше, неразличимы; 5) величины с разным физическим смыслом имеют одинаковые размерности:
- напряженность электрического поля **E** и поляризованность **P** (напряженность электрического поля это сила, действующая со стороны поля на положительный единичный заряд, отнесенная к величине этого заряда, а поляризуемость это суммарный электрический момент объема диэлектрика, отнесенный к величине этого объема);
- магнитная индукция ${\bf B}$ и намагниченность ${\bf M}$ (индукция магнитного поля это сила, действующая со стороны магнитного поля на единичный заряд, движущийся с относительной скоростью v/c, а намагниченность это суммарный магнитный момент объема магнетика, отнесенный к величине этого объема).

Таким образом, преподавание курса физики "Электромагнетизм" с использованием системы СГС или СИ, вызывает те или иные трудности.

Для разрешения этого противоречия предлагается следующее.

- 1. Отказаться от рационализированной формы записи законов и основных определений электромагнетизма.
- 2. Записать уравнения электромагнетизма в таком же виде, что и в системе СГС (т.е. без размерных коэффициентов ε_0 и μ_0), но с привлечением коэффициента k_0 , величина и размерность которого зависит от системы единиц.
- 3. Разработать новую четырехразмерную систему электромагнитных единиц, которая не имеет недостатков электромагнитных единиц СИ и системы СГС и предназначена для преподавания курса физики "Электромагнетизм".

В соответствие с п.п. 1–3 проведена коррекция математической формы записи некоторых уравнений электромагнетизма [11], которые теперь имеют одинаковый вид в различных системах единиц (табл. 2) и соответствуют современным научным взглядам на электромагнитное поле.

На основе этих уравнений разработана Теоретическая система электромагнитных единиц, сокращенно СТ, в которой основные единицы совпадают с основными единицами СИ (т.е. используются метр,

килограмм, секунда и ампер). Производные единицы СТ определяются на основе уравнений, приведенных в табл. 2.

В СТ основная единица — ампер (1 A) определяется (также как и в СИ) из закона Ампера для двух проводников с токами, записанного в виде уравнения:

$$\frac{F}{l} = k_0 \frac{2\mu I_1 I_2}{c^2 r},\tag{1}$$

как сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между проводниками силу, равную $2 \cdot 10^{-7} \, \mathrm{H}$ на каждый метр длины. Следовательно, размерный коэффициент k_0 в уравнении (1) должен иметь следующие величину и размерность

$$k_0 = 10^{-7} \zeta^2 \cong 9 \cdot 10^9 \text{H} \cdot \text{m}^2 / \text{K} \pi^2,$$
 (2)

$$\dim k_0 = L^3 M T^{-4} I^{-2}, \tag{3}$$

где $\zeta = 2,99792458 \cdot 10^8$ — числовое значение скорости света в вакууме.

В системе СГС коэффициент k_0 равен безразмерной единице $(k_0 = 1)$.

Формулы размерности и соотношения между единицами электрических и магнитных величин СТ и СИ приведены в табл. 3.

Необходимо отметить, что в СТ почти все единицы электрических величин (кроме единицы электрического смещения и потока электрического смещения) совпадают с соответствующими единицами СИ.

Названия некоторых магнитных единиц СТ образованы от названий соответствующих магнитных единиц СИ с добавлением прилагательного "теоретический (ая)", которое позволяет отличить единицу СТ от соответствующей единицы СИ. В частности, в СТ единица магнитной индукции В имеет название "тесла теоретическая", при написании: $1 \, \text{Тл}(T)$; единица потока магнитной индукции Φ — "вебер теоретический", $1 \, \text{Вб}(T)$, единица индуктивности L — "генри теоретический", $1 \, \text{Гн}(T)$.

Необходимо особо отметить, что в СТ одну и ту же единицу имеют, напряженность электрического поля ${\bf E}$ и электрическое смещение ${\bf D}$ ("вольт на метр" [1 ${\bf B/m}$]), магнитная индукция ${\bf B}$ и напряженность магнитного поля ${\bf H}$ ("теоретическая тесла" (1 ${\bf Tn}({\bf T})$).

. Таблица 2 Уравнения электромагнетизма, записанные в СИ, СТ и системе СГС

-					
	СИ	CT	СГС		
Закон или определение величины	$ μ_0 \cong 1,26 \cdot 10^{-6} \Gamma_{\text{H/M}} $ $ ε_0 \cong 8,85 \cdot 10^{-12} \Phi/_{\text{M}} $	$k_0 \cong 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \pi^2$ $c \cong 3 \cdot 10^8 \mathrm{m/c}$	$k_0 = 1$ $c \cong 3 \cdot 10^{10}$ см/с		
Закон Кулона	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{\varepsilon r^2}$	$F = k_0 \frac{Q_1 Q_2}{\varepsilon r^2}$			
Закон Ампера для параллель- ных токов	$\frac{F}{l} = \frac{\mu_0}{4\pi} \frac{2\mu I_1 I_2}{r}$	$\frac{F}{l} = k_0 \frac{2\mu I_1 I_2}{c^2 r}$			
Закон Био-Са- вара-Лапласа	$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I[d\mathbf{l} \times r]}{r^3}$	$d\mathbf{B} = k_0 \frac{I[d\mathbf{l} \times r]}{cr^3}$			
Электрическое смещение D	$\mathbf{D} = arepsilon_0 \mathbf{E} + \mathbf{P}$	$\mathbf{D} = \mathbf{E} + 4\pi k_0 \mathbf{P}$			
Связь между \mathbf{D} и \mathbf{E}	$\mathbf{D}=arepsilon_0arepsilon\mathbf{E}$	$\mathbf{D} = arepsilon \mathbf{E}$			
Напряженность магнитного поля ${\bf H}$	$\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$	$\mathbf{H} = \mathbf{B} - 4\pi k_0 \mathbf{M}$			
Связь между H и B	$\mathbf{H}=\mathbf{B}/(\mu_0\mu)$	$\mathbf{H}=\mathbf{B}/\mu$			
Электрический момент диполя р	$\mathbf{p}= Q 1$				
Магнитный момент \mathbf{p}_m	$\mathbf{p}_m = IS\mathbf{n}$	$\mathbf{p}_m = \frac{1}{c} I S \mathbf{n}$			
Магнитодвижущая сила F_m	$F_m = \oint \mathbf{H} \cdot d\mathbf{l} = \sum_{i=1}^N I_i$	$F_m = \oint H \cdot d\mathbf{l} = \frac{4\pi k_0}{c} \sum_{i=1}^{N} I_i$			
Магнитное сопротивление однородного участка цепи R_m	$R_m = \frac{U_m}{\Phi} = \frac{\ell}{\mu_0 \mu S}$	$R_m = rac{U_m}{\Phi} = rac{\ell}{\mu S}$			
Уравнения Максвелла (дифференциальная форма)					
Закон Фарадея	$\operatorname{rot}\mathbf{E}=-rac{d\mathbf{B}}{dt}$	$\mathrm{rot}\mathbf{E}=-rac{1}{c}rac{d\mathbf{B}}{dt}$			
Закон полного тока	$rot\mathbf{H} = \mathbf{j} + \frac{d\mathbf{D}}{dt}$	$\mathrm{rot}\mathbf{H}=rac{1}{c}igg(4\pi k_0\mathbf{j}+rac{d\mathbf{D}}{dt}igg)$			
Теорема Гаусса	$\operatorname{div} \mathbf{D} = \rho$	$\mathrm{div}\mathbf{D}=4\pi k_0 ho$			
Непрерывность линий магнитной индукции	$\mathrm{div}\mathbf{B}=0$				

Таблица 3 Формулы размерности и соотношения между электромагнитными единицами СИ и СТ

			Г
Физическая величина	Формула размерности		Соотношения между единицами СИ и СТ
	СИ	CT	
Электрический заряд Q	TI		1 Кл
Сила электрического тока I	I		1 A
Потенциал φ ; Напряжение U	$\mathrm{L}^2\mathrm{M}\mathrm{T}^{-3}\mathrm{I}^{-1}$		1 B
Электрическое сопротивление R	$L^2MT^{-3}I^{-2}$		1 Ом
Удельное электрическое сопротивление ρ_0	$\mathrm{L}^3\mathrm{MT}^{-3}\mathrm{I}^{-2}$		1 Ом∙м
Электрическая емкость C	$L^{-2}M^{-1}T^4I^2$		1Ф
Электрический мо- мент диполя р	LTI		1 Кл·м
Поляризация Р	$L^{-2}TI$		1 Кл/м ²
Напряженность электрического поля e	${ m LMT^{-3}I^{-1}}$		1 В/м
Электрическое сме- щение D	$L^{-2}TI$	${ m LMT^{-3}I^{-1}}$	$1 \text{Кл/м}^2 = 36 \pi \cdot 10^9 \text{В/м}$
Поток электриче- ского смещения Ф	TI	$L^3MT^{-3}I^{-1}$	$1 \mathrm{K}$ л = $36\pi \cdot 10^9 \mathrm{B} \cdot \mathrm{M}$
Магнитная индук- ция В	$\mathrm{MT^{-2}I^{-1}}$	${ m LMT^{-3}I^{-1}}$	$1 \text{ Tn} = 3.10^8 \text{ Tn}(\text{T})$
Напряженность магнитного поля H	$L^{-1}I$	$\mathrm{LMT^{-3}I^{-1}}$	$1 \text{ A/м} = 120\pi \text{ Тл(T)}$
Магнитный момент \mathbf{p}_m	L^2I	LTI	$1\mathrm{A}\cdot\mathrm{m}^2 = \frac{1}{3\cdot10^8}\mathrm{Tm}$
Намагниченность М	$L^{-1}I$	$L^{-2}TI$	$1 \text{ A/M} = \frac{1}{3 \cdot 10^8} \text{ Tm/m}^3$
Индуктивность L	$L^2MT^{-2}I^{-2}$	$L^4MT^{-4}I^{-2}$	$1 \Gamma_{\rm H} = 9 \cdot 10^{16} \Gamma_{\rm H}(\rm T)$
Магнитный поток Φ Потокосцепление Ψ	$\mathrm{L}^2\mathrm{M}\mathrm{T}^{-2}\mathrm{I}^{-1}$	$\mathrm{L}^{3}\mathrm{MT}^{-3}\mathrm{I}^{-1}$	1 B6 = 3·10 ⁸ B6(T)
Магнитодвижущая сила F_m	I	$L^2MT^{-3}I^{-1}$	$1 A = 120\pi B_T/A$
Магнитное сопротивление R_m	$L^{-2}M^{-1}T^2I^2$	L^{-1}	$1 \Gamma_{\text{H}}^{-1} = 1 \text{M}^{-1}$

Магнитный момент \mathbf{p}_m в СТ определяется по уравнению $\mathbf{p}_m = (I/c)\mathbf{S}$, из которого следует размерность и единица магнитного момента

$$\dim \mathbf{p}_m = \dim I \cdot \dim S / \dim c = I \cdot L^2 / (L^{-1}) = LTI, \tag{4}$$

$$[\mathbf{p}_m] = [I] \cdot [S]/[c] = 1 \,\mathrm{A} \cdot 1 \,\mathrm{m}^2/(1 \,\mathrm{m/c}) = 1 \,\mathrm{A} \cdot \mathrm{c} \cdot \mathrm{m}.$$
 (5)

Эта единица называется "ампер-секунда-метр".

Единица магнитного момента в СТ имеет неудобное название. Поэтому, следуя традиции называть единицы физических величин именами известных физиков, предлагается единицу "ампер-секунда-метр" назвать "тамм (1 Тм)" в честь Игоря Евгеньевича Тамма, лауреата Нобелевской премии.

Tамм равен магнитному моменту электрического тока силой $3 \cdot 10^8$ A, проходящего по контуру площадью 1 m^2 .

Намагниченность ${\bf M}$ в СИ и СТ определяется по уравнению ${\bf M} = \sum {\bf p}_m/V$, из которого следует формула размерности и единица намагниченности в СТ:

$$\dim \mathbf{M} = \dim \mathbf{p}_m / \dim V = L^{-2} \mathrm{TI}, \tag{6}$$

$$[\mathbf{M}] = [\mathbf{p}_m]/[V] = 1 \,\text{Tm}/1 \,\text{m}^3 = 1 \,\text{Tm}/\text{m}^3.$$
 (7)

Эта единица называется "тамм на кубический метр".

Tамм на кубический метр равен намагниченности, при которой вещество объемом $1\,\mathrm{m}^3$ имеет магнитный момент $1\,\mathrm{Tm}$.

Сравнительный анализ размерностей электрических и магнитных величин в СТ и СИ позволяет выявить следующее.

С одной стороны, в СИ величины, имеющие разный физический смысл: электрическое смещение \mathbf{D} и поляризуемость \mathbf{P} , а также напряженность магнитного поля \mathbf{H} и намагниченность \mathbf{M} имеют, соответственно, одинаковые формулы размерности. В СТ величины \mathbf{D} и \mathbf{P} , а также \mathbf{H} и \mathbf{M} имеют, соответственно, различные формулы размерности, что соответствует их различной сущности.

С другой стороны, в СИ однородные величины — момент электрического диполя ${\bf p}$ и магнитный момент ${\bf p}_m$ имеют различные формулы размерности. В СТ эти величины имеют одинаковую формулу размерности.

Основа равенства размерностей величин ${\bf p}$ и ${\bf p}_m$ следующая. Молекулярные токи в атоме или молекуле (движение N электронов вокруг положительно заряженного ядра) можно представить как движение суммарного отрицательного заряда Q=eN вокруг ядра с положительным зарядом Q по окружности радиусом r с периодом обращения

T, или как вращение вектора электрического диполя, имеющего заряд Q и плечо r. Модуль магнитного момента p_m можно определить через модуль электрического момента диполя p следующим образом [12]:

$$p_m = \frac{1}{c}IS = \frac{1}{c}\frac{Q}{T}\pi r^2 = Qr\frac{2\pi r}{2cT} = p\frac{v}{2c},$$
 (8)

где v — линейная скорость вращения конца вектора электрического момента.

Так как $\dim(v/c)=1$, то из уравнения (8) следует, что размерность магнитного диполя \mathbf{p}_m должна быть равна размерности момента электрического диполя \mathbf{p} , что говорит о глубокой связи между этими величинами.

В СТ магнитодвижущая сила F_m определятся по уравнению

$$F_m = \oint \mathbf{H} \cdot d\mathbf{l} = \frac{4\pi k_0}{c} \sum_{i=1}^{N} I_i, \tag{9}$$

из которого следует формула размерности магнитодвижущей силы в CT:

$$\dim F_m = \mathrm{L}^2 \mathrm{M} \mathrm{T}^{-3} \mathrm{I}^{-1} = \frac{\dim(\mathrm{энергия})}{\dim(\mathrm{время}) \cdot \dim(\mathrm{сила\ тока})}. \tag{10}$$

Анализ уравнения (10) позволяет установить физический смысл магнитодвижущей силы как энергии магнитного поля, создаваемого в единицу времени единицей силы электрического тока, протекающего внутри замкнутого контура [13]. Поэтому в СТ единицу магнитодвижущей силы F_m можно назвать "ватт на ампер" (1 BT/A).

Ватт на ампер равен магнитодвижущей силе вдоль замкнутого контура длиной 1 м, расположенного в магнитном поле напряженностью $1 \, \text{Тл}(T)$.

Напомним, что в СИ магнитодвижущая сила F_m определяется как скалярная величина, равная линейному интегралу напряженности магнитного поля вдоль рассматриваемого замкнутого контура и равная полному току, охватываемому этим контуром

$$F_m = \oint \mathbf{H} \cdot d\mathbf{l} = \sum_{i=1}^N I_i, \tag{11}$$

где N — число токов, охватываемых контуром.

Единицей в СИ магнитодвижущей силы F_m , является "ампер", а формула размерности величины F_m состоит только из одного символа электрического тока в первой степени:

$$\dim F_m = \dim H \cdot \dim l = (L^{-1}I) \cdot L = I, \tag{12}$$

$$[F_m] = [H] \cdot [l] = (1 \text{ A/m}) \cdot 1 \text{ m} = 1 \text{ A (ампер)}.$$
 (13)

Таким образом, можно сделать вывод, что размерность магнитодвижущей силы в СИ не отражает физического смысла этой величины.

В СТ разность скалярных магнитных потенциалов U_m определяется из уравнения $U_m = \int H_l dl$, из которого следует, что размерность и единица разности скалярных магнитных потенциалов совпадает с размерностью и единицей магнитодвижущей силы:

$$\dim U_m = L^2 M T^{-3} I^{-1}, \tag{14}$$

$$[U_m] = 1 \, \text{Тл}(M) \cdot M = 1 \, \text{Вт/A}$$
 (ватт на ампер). (15)

В СТ магнитное сопротивление R_m определятся по уравнению $R_m = U_m/\Phi$, из которого следует формула размерности и единица магнитного сопротивления

$$\dim R_m = \dim U_m / \dim \Phi = (L^2 M T^{-3} I^{-1}) / (L^3 M T^{-3} I^{-1}) = L^{-1}, (16)$$

$$[R_m] = [U_m]/[\Phi] = 1 \,\text{BT/A}/1 \,\text{B}6(T) = 1 \,\text{m}^{-1},$$
 (17)

которая называется "обратный метр".

Обратный метр равен магнитному сопротивлению цепи, в которой разность магнитных потенциалов $1 \, \text{Вт}/\Phi$ создает магнитный поток $1 \, \text{Вб}(T)$.

Таким образом, сопоставительный анализ электромагнитных единиц различных систем показал, что единицы СТ не имеют недостатков электромагнитных единиц систем СГС и СИ. Поэтому использование теоретической системы электромагнитных единиц в преподавании раздела физики "Электромагнетизм" дает возможность формировать у студентов знания, которые соответствуют современным научным взглядам на электромагнитное поле.

СПИСОК ЛИТЕРАТУРЫ

- 1. ГОСТ 8.417–81. ГСИ. Единицы физических величин. М.: Изд-во стандартов, $1991.-40\,\mathrm{c}.$
- 2. С а в е л ь е в В. Д. Курс общей физики: Учеб. пособие для втузов. В 5 кн. Кн. 2. Электричество и магнетизм. М.: ООО "Издательство Астрель", ООО "Издательство АСТ", 2001. 336 с.
- 3. С у х а н о в А. Д. Фундаментальный курс физики. Учеб. пособие для втузов. В 4-х томах. Том II. Континуальная физика. Кн. 1. М.: Изд-во "Агар", 1998. 338 с.
- 4. И патова И. П., Мастеров В. Ф., Уханов Ю. И. Курс физики в 2 т. Т. П. Электромагнитные явления. СПб.: Изд-во СПбГПУ, 2003. 323 с.
- 5. Бредов М. М., Румянцев В. В., Топтыгин И. Н. Классическая электродинамика: Учеб. пособ. СПб.: Изд-во "Лань", 2003. 400 с.
- 6. Т а м м И. Е. Основы теории электричества: Учеб. пособ. для вузов. 10-е изд., испр. М.: Наука, 1989. 430 с.

- 7. Ландау Л. Д., Лившиц Е. М. Теория поля. 7-е изд., испр. М.: Наука, 1988. 510 с.
- 8. С и в у х и н Д. В. Общий курс физики. Т. 3. Электричество, 2-изд. М.: Наука, 1983. 688 с.
- 9. К о б з а р е в Ю. Б., H е з л и н М. В. Физическая книга о единицах и размерностях // УФН. 1979. Т. 129. С. 351–352.
- 10. X а л и л е е в П. А. Основные понятия электродинамики сплошных сред: Методические заметки. Свердловск: УрО АН СССР, 1989. 226 с.
- 11. Т р у н о в Г. М. Приведение единиц электрических и магнитных величин системы СИ в соответствие с современным представлением об электромагнитном поле // Физическое образование в вузах. 2001. Т. 7. № 4. С. 12–21.
- 12. Т р у н о в Γ . М. О формулах размерности электрических и магнитных величин // Законодательная и прикладная метрология. 2004. № 6. С. 36–39.
- 13. Т р у н о в Γ . М. О физическом смысле магнитодвижущей силы // Законодательная и прикладная метрология. 2005. № 1. С. 48–49.

Статья поступила в редакцию 28.09.2005

Геннадий Михайлович Трунов родился в 1943 г. Окончил Пермский государственный университет им. А.М. Горького в 1965 г. Кандю техню наук, ст. науч. сотр., доцент кафедры "Общей физики" Пермского государственный технический университет. Специализируется в области теоретической физики и теоретической метрологии. Автор 46 научных работ.